PRICE PREDICTION OF BITCOIN USING MACHINE LEARNING
نویسندگان
چکیده
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملUsing Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملVehicle Price Prediction System using Machine Learning Techniques
This paper presents a vehicle price prediction system by using the supervised machine learning technique. The research uses multiple linear regression as the machine learning prediction method which offered 98% prediction precision. Using multiple linear regression, there are multiple independent variables but one and only one dependent variable whose actual and predicted values are compared to...
متن کاملLearning Time Series Data using Cross Correlation and Its Application in Bitcoin Price Prediction
In this work, we developed an quantitative trading algorithm for bitcoin that is shown to be profitable. The algorithm establishes a framework that combines parametric variables and non-parametric variables in a logistical regression model, capturing information in both the static states and the evolution of states. The combination improves the performance of the strategy. In addition, we demon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering Applied Sciences and Technology
سال: 2020
ISSN: 2455-2143
DOI: 10.33564/ijeast.2020.v05i01.089